Ultra-high capacitance hematite thin films with controlled nanoscopic morphologies.

نویسندگان

  • Jingling Liu
  • Eunjik Lee
  • Yong-Tae Kim
  • Young-Uk Kwon
چکیده

We synthesized α-Fe₂O₃ (hematite) thin films with two different nanoscopic morphologies through self-assembly between a Fe-precursor and a Pluronic tri-block copolymer (F127) followed by aging and calcination. Relative humidity (RH) during the aging step of the spin-coated films was found to be critical in determining the morphologies. A network structure of nanowires ∼6 nm in diameter formed when the RH was 75%. The resulting nanowire hematite thin film (NW) had 150-250 nm-sized macropores. When the RH was 0%, a mesoporous hematite thin film (MP) with a wormlike pore structure and a pore size of ∼9 nm formed. Investigation of the electrochemical properties of these films revealed that they had very high specific capacitances of 365.7 and 283.2 F g(-1) for NWs and MPs, respectively, at a current density of 3 A g(-1) in a 0.5 M Na₂SO₃ electrolyte. Both of these capacitance values are considerably higher than those previously reported for hematite-based electrodes. We attributed this to the high porosity of the thin films, which enables ready access of electrolyte ions to the electrode surfaces, and their ultra-thin size, comparable to that of the depletion layer, allowing the low conductivity of hematite to be overcome. The higher capacitance of NWs than MPs is likely due to the accelerated electron transport through the crystalline nanowires in NWs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hematite Thin Films with Various Nanoscopic Morphologies Through Control of Self-Assembly Structures

Hematite (α-Fe2O3) thin films with various nanostructures were synthesized through self-assembly between iron oxide hydroxide particles, generated by hydrolysis and condensation of Fe(NO3)3 · 6H2O, and a Pluronic triblock copolymer (F127, (EO)106(PO)70(EO)106, EO = ethylene oxide, PO = propylene oxide), followed by calcination. The self-assembly structure can be tuned by introducing water in a ...

متن کامل

Facile Synthesis of Novel Nanostructured MnO2Thin Films and Their Application in Supercapacitors

Nanostructured alpha-MnO(2) thin films with different morphologies are grown on the platinum substrates by a facile solution method without any assistance of template or surfactant. Microstructural characterization reveals that morphology evolution from dandelion-like spheres to nanoflakes of the as-grown MnO(2) is controlled by synthesis temperature. The capacitive behavior of the MnO(2) thin ...

متن کامل

Leakage Current Comparison Between Ultra-Thin Ta2O5 Films and Conventional Gate Dielectrics

Capacitors with ultra-thin (6.0–12.0 nm) CVD Ta2O5 film were fabricated on lightly doped Si substrates and their leakage current (Ig–Vg) and capacitance (C–V ) characteristics were studied. For the first time, samples with stack equivalent oxide thickness around 2.0 nm were compared with ultra-thin silicon dioxide and silicon oxynitride. The Ta2O5 samples showed remarkably lower leakage current...

متن کامل

Relation between electrical properties of aerosol-deposited BaTiO3 thin films and their mechanical hardness measured by nano-indentation

To achieve a high capacitance density for embedded decoupling capacitor applications, the aerosol deposition (AD) process was applied as a thin film deposition process. BaTiO3 films were fabricated on Cu substrates by the AD process at room temperature, and the film thickness was reduced to confirm the limit of the critical minimum thickness for dielectric properties. As a result, the BaTiO3 th...

متن کامل

TiO2 and Fe2O3 films for photoelectrochemical water splitting.

Titanium oxide (TiO2) and iron oxide (α-Fe2O3) hematite films have potential applications as photoanodes in electrochemical water splitting. In the present work TiO2 and α-Fe2O3 thin films were prepared by two methods, e.g., sol-gel and High Power Impulse Magnetron Sputtering (HiPIMS) and judged on the basis of physical properties such as crystalline structure and surface topography and functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 18  شماره 

صفحات  -

تاریخ انتشار 2014